CONTINUITY \& DIFFERENTLABILITYMODULE 3

RECAP

DIFFERENTIATE THE FOLLOWING

1) $y=x^{n} \sin x$
2) $y=(a x+b)(c x+d)$
3) $y=\frac{x^{n}}{\sin x}$

$$
\text { 5) } y=5 x^{4}+8 x^{3}-7 x^{2}+10 x-2
$$

$$
\begin{aligned}
& \text { 1) } \begin{array}{l}
\frac{d y}{d x}=x^{n} \frac{d}{d x}(\sin \mathrm{x})+\sin \mathrm{x} \frac{d}{d x}\left(x^{n}\right) \\
=x^{n} \cos \mathrm{~s}+\sin \mathrm{x} \cdot \mathrm{n} x^{n-1} \\
\text { 3) } \frac{d y}{d x}=\frac{\sin \mathrm{x} \frac{d}{d x}\left(x^{n}\right)-x^{n} \frac{d}{d x}(\sin \mathrm{x})}{\sin ^{2} x}= \\
\text { sinx. } \mathrm{n} x^{n-1}-x^{n} \cos \mathrm{x} \\
\frac{\sin ^{2} x}{} \\
\text { 5) } \frac{d y}{d x}=5.4 x^{3}+8.3 x^{2}-7.2 x^{1}+10 \\
=20 x^{3}+24 x^{2}-14 \mathrm{x}+10
\end{array}
\end{aligned}
$$

$\frac{d}{d x}\left(f(\mathrm{ax}+\mathrm{b})=\mathrm{a} \cdot f^{\prime}(\mathrm{ax}+\mathrm{b})\right.$

$$
\begin{aligned}
& \text { Find } \frac{d y}{d x} \\
& \begin{aligned}
\text { 1) } \mathrm{Y}=\sin (2 \mathrm{x}+6) \\
\text { 2) } \mathrm{Y}=e^{7 x-9} \\
\text { 3) } \mathrm{Y}=\log (-5 \mathrm{x}+1) \\
\text { 4) } \mathrm{Y}=\sec \left(\frac{1}{2} \mathrm{x}-3\right)
\end{aligned}
\end{aligned}
$$

- $2 \cos (2 x+6)$

$\frac{d}{d x}\left[(f(x))^{n}\right]=n(f(x))^{n-1} \cdot f^{\prime}(x)$

$Y=\sin ^{5} x$	$\frac{d y}{d x}=5 \sin ^{4} x \cdot \cos x$
$Y=\sqrt{x^{2}+5 x+7}$	$\frac{d y}{d x}=\frac{1}{2}\left(x^{2}+5 x+7\right)^{\frac{-1}{2}}(2 x+5)$
$Y=\left(x^{2}+7 x+\tan x\right)^{5}$	$\frac{d y}{d x}=5\left(x^{2}+7 x+\tan x\right)^{4}\left(2 x+7+\sec ^{2} x\right)$

$\frac{d}{d x}\left[f^{n}(\mathrm{~g}(\mathrm{x}))\right]=\mathrm{n} f^{n-1}(\mathrm{~g}(\mathrm{x})) \cdot \mathrm{f}^{\prime}\left(\mathrm{g}(\mathrm{x}) \mathrm{g}^{\prime}(x)\right.$

$$
\begin{aligned}
& \mathrm{Y}=\sin ^{5}\left(3 x^{2}+2\right) \\
& \frac{d y}{d x}=5 \cdot \sin ^{4}\left(3 x^{2}+2\right) \cdot \cos \left(3 x^{2}+2\right) \cdot 6 \mathrm{X} \\
& \text { * } \mathrm{Y}=\cos ^{3}\left(e^{x}\right) \\
& \frac{d y}{d x}=3 \cdot \cos ^{2}\left(e^{x}\right) \cdot\left(-\sin \left(e^{x}\right) \cdot\left(e^{x}\right)\right. \\
& y=\log \left(x+\sqrt{x^{2}+1}\right)^{2} \\
& y=2 \cdot \log \left(x+\sqrt{x^{2}+1}\right) \\
& \frac{d y}{d x}=2 \cdot \frac{1}{\mathbf{x}+\sqrt{x^{2}+1}}\left(1+\frac{1}{2 \sqrt{x^{2}+1}} \mathbf{x} \mathbf{x}\right) \\
& \text { =2. } \frac{1}{x+\sqrt{x^{2}+1}}\left(\frac{\sqrt{x^{2}+1}+x}{\sqrt{x^{2}+1}}\right) \\
& =2 \frac{1}{\sqrt{x^{2}+1}}=\frac{2}{\sqrt{x^{2}+1}}
\end{aligned}
$$

- $\mathrm{Y}=\left[\log \left(\mathbf{x}+\sqrt{\boldsymbol{x}^{2}+\mathbf{1}}\right)\right]^{2}$
$\frac{d y}{d x}=2\left(\log \left(\mathrm{x}+\sqrt{x^{2}+\mathbf{1}}\right)\right) \times \frac{1}{\mathrm{x}+\sqrt{x^{2}+1}}\left(1+\frac{1}{2 \sqrt{x^{2}+1}} \times 2 \mathrm{x}\right)$

$$
=\text { 2. }\left(\log \left(\mathrm{x}+\sqrt{x^{2}+1}\right) \frac{1}{\mathrm{x}+\sqrt{x^{2}+1}}\left(\frac{\sqrt{x^{2}+1}+x}{\sqrt{x^{2}+1}}\right)\right.
$$

$$
\begin{aligned}
& \mathrm{Y}=\sqrt{e^{\sin x}}=\left(e^{\sin x}\right)^{\frac{1}{2}} \\
& =\frac{1}{2}\left(e^{\sin x}\right)^{-\frac{1}{2}} \cdot e^{\sin x} \cdot \cos X
\end{aligned}
$$

$$
=\frac{2\left(\log \left(x+\sqrt{x^{2}+1}\right)\right.}{\sqrt{x^{2}+1}}
$$

$$
=\frac{1}{2} \sqrt{e^{\sin x}} \cdot \cos x
$$

Find the derivative of $y=(2 x+1)^{5}\left(x^{3}-x+1\right)^{4}$

Chain rule
with product r

$$
\begin{aligned}
& \frac{d y}{d x}=(2 x+1)^{3} \frac{d}{d x}\left(x^{3}-x+1\right)^{4}+\left(x^{3}-x+1\right)^{4} \frac{d}{d x}(2 x+1)^{3} \\
& =(2 x+1)^{5}-4\left(x^{3}-x+1\right)^{3} \frac{d}{d x}\left(x^{3}-x+1\right)+\left(x^{3}-x+1\right)^{4} \cdot 5(2 x+1)^{4} \frac{d}{d x}(2 x+1) \\
& =4(2 x+1)^{5}\left(x^{3}-x+1\right)^{3}\left(3 x^{2}-1\right)+5\left(x^{3}-x+1\right)^{4}(2 x+1)^{4} \cdot 2 \\
& =2(2 x+1)^{4}\left(x^{3}-x+1\right)^{3}\left[2(2 x+1)\left(3 x^{4}-1\right)+5\left(x^{3}-x+1\right)\right] \\
& =2(2 x+1)^{4}\left(x^{3}-x+1\right)^{3}\left[(4 x+2)\left(3 x^{2}-1\right)+5 x^{3}-5 x+1\right] \\
& =2(2 x+1)^{4}\left(x^{3}-x+1\right)^{3}\left[12 x^{3}-4 x+6 x^{2}-2+5 x^{3}-5 x+5\right] \\
& =2(2 x+1)^{4}\left(x^{3}-x+1\right)^{3}\left(17 x^{3}+6 x^{2}-9 x+3\right)
\end{aligned}
$$

$Y=\frac{(2 x-5)^{4}}{\left(8 x^{2}-5\right)^{3}}$

Find the derivative of $y=(2 x-5)^{4}\left(8 x^{2}-5\right)^{-3}$

Solution

We need to use the product rule and the chain rule:

$$
y^{\prime}=4(2 x-5)^{3}(2)\left(8 x^{2}-5\right)^{-3}+(2 x-5)^{4}(-3)\left(8 x^{2}-5\right)^{-4}(16 x)
$$

The rest is a bit of algebra, useful if you wanted to solve the equation $y^{\prime}=0$:

$$
\begin{aligned}
y^{\prime} & =8(2 x-5)^{3}\left(8 x^{2}-5\right)^{-4}\left[\left(8 x^{2}-5\right)-6 x(2 x-5)\right] \\
& =8(2 x-5)^{3}\left(8 x^{2}-5\right)^{-4}\left(-4 x^{2}+30 x-5\right) \\
& =-8(2 x-5)^{3}\left(8 x^{2}-5\right)^{-4}\left(4 x^{2}-30 x+5\right)
\end{aligned}
$$

WHAT IS CHAIN RULE

$$
\begin{aligned}
& \mathrm{y}=\mathrm{f}[\mathrm{~g}(\mathbf{x})] \\
& \quad \text { let } \mathrm{t}=\mathrm{g}(\mathbf{x}) \quad \text { then } \mathrm{y}=\mathrm{f}(\mathrm{t}) \quad: \frac{d y}{d t}=f^{\prime}(\mathrm{t}) \text { and } \frac{d t}{d x}=g^{\prime}(\mathbf{x}) \\
& \frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}=f^{\prime}(\mathbf{t}) \cdot g^{\prime}(\mathbf{x})=f^{\prime}(\mathrm{g}(\mathbf{x})) \cdot g^{\prime}(\mathbf{x})
\end{aligned}
$$

$\mathbf{y}=\mathbf{f}[\mathbf{g}(\mathbf{h}(\mathbf{x}))]$
let $t=h(x)$, and then $y=f(g(t))$: let $u=g(t)$ then $y=f(u)$

$$
\frac{d y}{d x}=\frac{d y}{d u} \mathrm{x} \frac{d u}{d t} \mathrm{x} \frac{d t}{d x}=f^{\prime}(\mathrm{u}) \cdot g^{\prime}(\mathrm{t}) \cdot h^{\prime}(\mathrm{x})=f^{\prime}\left(\mathrm{g}(\mathrm{~h}(\mathrm{x})) \cdot g^{\prime}(\mathrm{h}(\mathrm{x})) \cdot h^{\prime}(\mathrm{x})\right.
$$

EXAMPLE:Y $=\sin ^{5}\left(3 x^{2}+2\right)$
$\mathrm{t}=3 \boldsymbol{x}^{2}+2 ; \mathrm{u}=\sin \mathrm{t}: \mathrm{y}=\boldsymbol{u}^{5}$
$\frac{d y}{d x}=5 \cdot \sin ^{4}\left(3 x^{2}+2\right) \cdot \cos \left(3 x^{2}+2\right) \cdot 6 \mathrm{X}$

HOME WORK

